## Towards three-dimensional mapping of skyrmionic spin textures in an FeGe nanodisk using off-axis electron holography

Fengshan Zheng<sup>1, 2</sup> Jan Caron<sup>2</sup>, Andrii S. Savenchko<sup>3</sup>, Shasha Wang<sup>4</sup>, Weiwei Wang<sup>4, 5</sup>, Thibaud Denneulin<sup>2</sup>, András Kovács<sup>2</sup>, Hongchu Du<sup>2, 6</sup>, Haifeng Du<sup>4, 5</sup>, Nikolai S. Kiselev<sup>3</sup>, Sfefan Blügel<sup>3</sup> and Rafal E Dunin-Borkowski<sup>2</sup>

- <sup>1.</sup> Spin-X Institute, Electron Microscopy Center, School of Physics and Optoelectronics, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 511442, China
- <sup>2</sup> Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute, Forschungszentrum Jülich, 52425 Jülich, Germany
- <sup>3</sup> Peter Grünberg Institute and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, 52425 Jülich, Germany
- <sup>4</sup> Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031 P. R. China
- <sup>5</sup> Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601 P. R. China
- <sup>6</sup> Central Facility for Electron Microscopy (GFE), RWTH Aachen University, Ahornstrasse 55, 52074 Aachen, Germany

In nanoscale magnetic materials and devices, three-dimensional (3D) spin textures link fundamental physical properties, such as exchange stiffness and magnetocrystalline anisotropy, with more "macroscopic" quantities such as hysteresis and coercivity. Numerous efforts have been made to develop experimental techniques that can be used to measure and visualise 3D spin textures, typically by recording and analysing tilt series of phase contrast images, diffraction patterns or spectra recorded using electrons, X-rays or neutrons [1]. However, most previous studies have suffered from the use of sub-optimal imaging techniques or reconstruction algorithms [2-4]. Furthermore, they have not discussed the uniqueness of the reconstructed spin textures and have not compared them with simulated datasets that incorporate physical material parameters.

Here, we assess some of these challenges through the analysis of phase images recorded using off-axis electron holography in the transmission electron microscope from an FeGe nanodisk (~150 nm in diameter and ~120 nm in thickness) that contains a magnetic target skyrmion, which is stable in the absence of an external magnetic field [5]. It can therefore be imaged as a function of sample tile angle in magnetic-field-free conditions with the conventional microscope objective lens switched off and without the need to tilt the applied magnetic field together with the sample or to use a magnetizing specimen holder [6-7]. Figure 1 shows an experimental tilt series of electron holographic phase images recorded from the FeGe nanodisk. At each sample tilt angle, the mean inner potential contribution the phase was removed by subtracting a phase image recorded at room temperature, when the sample is paramagnetic.

This dataset was analysed using several different approaches. For example, a numerical model-based algorithm was used to reconstruct the three-dimensional magnetization distribution in the nanodisk from the full tilt series of magnetic phase images [8], making use of *a priori* information about the geometry of the sample. A regularisation parameter was also used to achieve a balance between consistency with the experimental data and smoothness of the reconstructed magnetization. These results will be compared with an alternative approach, which involves the direct comparison of the experimental results with predicted images based on micromagnetic simulations [9].

## References:

- [1] Fernandez-Pacheco, A. et al. Nat. Commun. 8, 125756 (2017).
- [2] Phatak, C. et al. Phys. Rev. Lett. 104, 253901 (2010).
- [3] Tanigaki, T. et al. Nano Lett. 15, 1309-1314 (2015).
- [4] Wolf, D. et al. Commun. Phys. 2, 87 (2019).
- [5] Zheng, F. et al. Phys. Rev. Lett. 119, 197205 (2017).
- [6] Wolf, D. et al. Nat. Nanotechnol. 17, 250-255 (2022).
- [7] Sugawara, A. et al. *Ultramicroscopy* 197, 105-111 (2019).
- [8] Caron, J. Ph.D. thesis, RWTH Aachen University 2017.
- [9] The authors acknowledge the European Research Council under the European Union's Horizon 2020 Research and Innovation Programme (Grant No. 856538-Project '3D MAGiC').

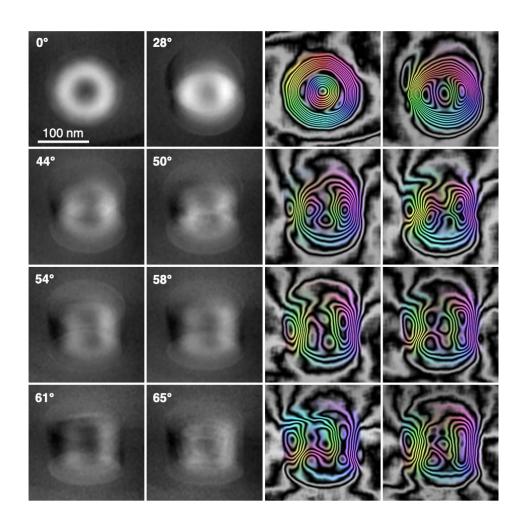



Figure 1. (Left) Tomographic tilt series of magnetic phase images of a target magnetic skyrmion in an FeGe nanodisk recorded using off-axis electron holography at the indicated sample tilt angles about a horizontal axis. At each sample tilt angle, the mean inner potential contribution to the phase was removed by subtracting the phase reconstructed from an equivalent hologram recorded at room temperature, when the sample is paramagnetic. (Right) corresponding magnetic induction maps. Contour spacing is  $2\pi/30$  radian.